Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43.460
Filtrar
1.
Gut Microbes ; 16(1): 2338946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656273

RESUMO

Synbiotics combine the concepts of probiotics and prebiotics to synergistically enhance the health-associated effects of both components. Previously, we have shown that the intestinal persistence of inulin-utilizing L. plantarum Lp900 is significantly increased in rats fed an inulin-supplemented, high-calcium diet. Here we employed a competitive population dynamics approach to demonstrate that inulin and GOS can selectively enrich L. plantarum strains that utilize these substrates for growth during in vitro cultivation, but that such enrichment did not occur during intestinal transit in rats fed a GOS or inulin-supplemented diet. The intestinal persistence of all L. plantarum strains increased irrespective of their prebiotic utilization phenotype, which was dependent on the calcium level of the diet. Analysis of fecal microbiota and intestinal persistence decline rates indicated that prebiotic utilization capacity did not selectively stimulate intestinal persistence in prebiotic supplemented diets. Moreover, microbiota and organic acid profile analyses indicate that the prebiotic utilizing probiotic strains are vastly outcompeted by the endogenous prebiotic-utilizing microbiota, and that the collective enhanced persistence of all L. plantarum strains is most likely explained by their well-established tolerance to organic acids.


Assuntos
Fezes , Microbioma Gastrointestinal , Inulina , Prebióticos , Animais , Prebióticos/administração & dosagem , Inulina/metabolismo , Inulina/administração & dosagem , Ratos , Fezes/microbiologia , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/fisiologia , Masculino , Probióticos/administração & dosagem , Simbióticos/administração & dosagem , Ratos Sprague-Dawley
2.
J Hazard Mater ; 470: 134177, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565010

RESUMO

Perfluorooctane sulfonates (PFOS) are the persistent organic pollutants. In the present study, 0, 0.3, or 3-mg/kg PFOS were administered to pregnant mice from GD 11 to GD 18. The histopathology of liver and intestine, serum and hepatic lipid levels, lipid metabolism related genes, and gut microbiota were examined in adult female offspring. The results suggested that maternal PFOS exposure increased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and induced F4/80+ macrophage infiltration in adult female offspring, in addition to the elevation of TNF-α and IL-1ß mRNA levels in low-dose and high-dose groups, respectively. Furthermore, maternal exposure to PFOS increased serum triglyceride (TG) and hepatic total cholesterol (TC) levels, which was associated with the alteration of the process of fatty acid transport and ß-oxidation, TG synthesis and transport, cholesterol synthesis and excretion in the liver. The AMPK/mTOR/autophagy signaling was also inhibited in the liver of adult female offspring. Moreover, changes in gut microbiota were also related to lipid metabolism, especially for the Desulfovibrio, Ligilactobacillus, Enterorhabdus, HT002 and Peptococcaceae_unclassified. Additionally, maternal exposure to PFOS decreased mRNA expressions of the tight junction protein and AB+ goblet cells in the colon, while increasing the overproduction of lipopolysaccharides (LPS) and F4/80+ macrophage infiltration. Collectively, maternal PFOS exposure induced liver lipid accumulation and inflammation, which strongly correlated with the disruption of the gut-liver axis and autophagy in adult female offspring, highlighting the persistent adverse effects in offspring exposed to PFOS.


Assuntos
Ácidos Alcanossulfônicos , Autofagia , Fluorocarbonos , Microbioma Gastrointestinal , Metabolismo dos Lipídeos , Fígado , Exposição Materna , Efeitos Tardios da Exposição Pré-Natal , Animais , Fluorocarbonos/toxicidade , Feminino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Gravidez , Microbioma Gastrointestinal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Ácidos Alcanossulfônicos/toxicidade , Autofagia/efeitos dos fármacos , Exposição Materna/efeitos adversos , Inflamação/induzido quimicamente , Camundongos , Masculino
3.
J Hazard Mater ; 470: 134147, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565017

RESUMO

Microplastics and antibiotics are prevalent and emerging pollutants in aquatic ecosystems, but their interactions in aquatic food chains remain largely unexplored. This study investigated the impact of polypropylene microplastics (PP-MPs) on oxytetracycline (OTC) trophic transfer from the shrimp (Neocaridina denticulate) to crucian carp (Carassius auratus) by metagenomic sequencing. The carrier effects of PP-MPs promoted OTC bioaccumulation and trophic transfer, which exacerbated enterocyte vacuolation and hepatocyte eosinophilic necrosis. PP-MPs enhanced the inhibitory effect of OTC on intestinal lysozyme activities and complement C3 levels in shrimp and fish, and hepatic immunoglobulin M levels in fish (p < 0.05). Co-exposure of MPs and OTC markedly increased the abundance of Actinobacteria in shrimp and Firmicutes in fish, which caused disturbances in carbohydrate, amino acid, and energy metabolism. Moreover, OTC exacerbated the enrichment of antibiotic resistance genes (ARGs) in aquatic animals, and PP-MPs significantly increased the diversity and abundance of ARGs and facilitated the trophic transfer of teta and tetm. Our findings disclosed the impacts of PP-MPs on the mechanism of antibiotic toxicity in aquatic food chains and emphasized the importance of gut microbiota for ARGs trophic transfer, which contributed to a deeper understanding of potential risks posed by complex pollutants on aquatic ecosystems.


Assuntos
Antibacterianos , Cadeia Alimentar , Microbioma Gastrointestinal , Microplásticos , Oxitetraciclina , Poluentes Químicos da Água , Animais , Oxitetraciclina/toxicidade , Microplásticos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Antibacterianos/toxicidade , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Polipropilenos , Carpa Dourada/genética , Carpa Dourada/metabolismo , Penaeidae/microbiologia , Penaeidae/efeitos dos fármacos , Muramidase/metabolismo
4.
J Hazard Mater ; 470: 134157, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569337

RESUMO

The wide occurrence of micro- and nanoplastics (MPs/NPs) within aquatic ecosystems has raised increasing concerns regarding their potential effects on aquatic organisms. However, the effects of MPs/NPs on intestinal health and microbiota of fish remain controversial, and there is a lack of comprehensive understanding regarding how the impact of MPs/NPs is influenced by MPs/NPs characteristics and experimental designs. Here, we conducted a global analysis to synthesize the effects of MPs/NPs on 47 variables associated with fish intestinal health and microbiota from 118 studies. We found that MPs/NPs generally exerted obvious adverse effects on intestinal histological structure, permeability, digestive function, immune and oxidative-antioxidative systems. By contrast, MPs/NPs showed slight effects on intestinal microbial variables. Further, we observed that the responses of intestinal variables to MPs/NPs were significantly regulated by MPs/NPs characteristics and experimental designs. For instance, polyvinyl chloride plastics showed higher toxicity to fish gut than polyethylene and polystyrene did. Additionally, larval fish appeared to be more sensitive to MPs/NPs than juvenile fish. Collectively, this study highlights the potential impacts of MPs/NPs on intestinal health and microbiota of fish, and underscores the determinant role of MPs/NPs characteristics and experimental designs in MPs/NPs toxicity.


Assuntos
Peixes , Microbioma Gastrointestinal , Intestinos , Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Nanopartículas/toxicidade , Nanopartículas/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-38661726

RESUMO

A novel bifidobacterium (designated F753-1T) was isolated from the gut of honeybee (Apis mellifera). Strain F753-1T was characterized using a polyphasic taxonomic approach. Strain F753-1T was phylogenetically related to the type strains of Bifidobacterium mizhiensis, Bifidobacterium asteroides, Bifidobacterium choladohabitans, Bifidobacterium mellis, Bifidobacterium apousia and Bifidobacterium polysaccharolyticum, having 98.4-99.8 % 16S rRNA gene sequence similarities. The phylogenomic tree indicated that strain F753-1T was most closely related to the type strains of B. mellis and B. choladohabitans. Strain F753-1T had the highest average nucleotide identity (94.1-94.5 %) and digital DNA-DNA hybridization (56.3 %) values with B. mellis Bin7NT. Acid production from amygdalin, d-fructose, gentiobiose, d-mannose, maltose, sucrose and d-xylose, activity of α-galactosidase, pyruvate utilization and hydrolysis of hippurate could differentiate strain F753-1T from B. mellis CCUG 66113T and B. choladohabitans JCM 34586T. Based upon the data obtained in the present study, a novel species, Bifidobacterium apis sp. nov., is proposed, and the type strain is F753-1T (=CCTCC AB 2023227T=JCM 36562T=LMG 33388T).


Assuntos
Técnicas de Tipagem Bacteriana , Bifidobacterium , DNA Bacteriano , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Abelhas/microbiologia , Animais , RNA Ribossômico 16S/genética , Bifidobacterium/isolamento & purificação , Bifidobacterium/classificação , Bifidobacterium/genética , DNA Bacteriano/genética , Ácidos Graxos , Composição de Bases , Microbioma Gastrointestinal
6.
Zhonghua Wei Chang Wai Ke Za Zhi ; 27(4): 326-337, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38644237

RESUMO

Chronic constipation is one of the common gastrointestinal disorders, with an incidence rate that is gradually increasing yearly and becoming an important chronic disease that affects people's health and quality of life. In recent years, significant progress has been made in the basic and clinical research of chronic constipation, especially the gut microbiota therapy methods have received increasing attention. Therefore, under the initiative of the Parenteral and Enteral Nutrition Branch of the Chinese Medical Association, Chinese Society for the Promotion of Human Health Science and Technology, and Committee on Gut Microecology and Fecal Microbiota Transplantation, experts from relevant fields in China have been organized to establish the "Chinese Expert Consensus on the Clinical Diagnosis and Treatment of Gut Microecology in Chronic Constipation (2024 Edition)" committee. Focusing on the dysbiosis of gut microbiota, the indications for gut microbiota therapy, and the protocols for fecal microbiota transplantation, 16 consensus opinions were proposed based on the review of domestic and international literature and the clinical experience of experts, aiming to standardize the clinical application of gut microbiota in chronic constipation.


Assuntos
Consenso , Constipação Intestinal , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Humanos , Constipação Intestinal/terapia , Constipação Intestinal/diagnóstico , Doença Crônica , China , Disbiose/terapia , Disbiose/diagnóstico , Qualidade de Vida
7.
Int J Rheum Dis ; 27(4): e15147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644732

RESUMO

Gout is a chronic metabolic and immune disease, and its specific pathogenesis is still unclear. When the serum uric acid exceeds its saturation in the blood or tissue fluid, it is converted to monosodium urate crystals, which lead to acute arthritis of varying degrees, urinary stones, or irreversible peripheral joint damage, and in severe cases, impairment of vital organ function. Gout flare is a clinically significant state of acute inflammation in gout. The current treatment is mostly anti-inflammatory analgesics, which have numerous side effects with limited treatment methods. Gout pathogenesis involves many aspects. Therefore, exploring gout pathogenesis from multiple perspectives is conducive to identifying more therapeutic targets and providing safer and more effective alternative treatment options for patients with gout flare. Thus, this article is of great significance for further exploring the pathogenesis of gout. The author summarizes the pathogenesis of gout from four aspects: signaling pathways, inflammatory factors, intestinal flora, and programmed cell death, focusing on exploring more new therapeutic targets.


Assuntos
Microbioma Gastrointestinal , Supressores da Gota , Gota , Transdução de Sinais , Ácido Úrico , Humanos , Gota/tratamento farmacológico , Ácido Úrico/sangue , Ácido Úrico/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Supressores da Gota/uso terapêutico , Mediadores da Inflamação/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico
8.
Artigo em Chinês | MEDLINE | ID: mdl-38664027

RESUMO

Objective: To investigate the causality between intestinal flora and hypertrophic scars (HS) of human. Methods: This study was a study based on two-sample Mendelian randomization (TSMR) analysis. The data on intestinal flora (n=18 473) and HS (n=208 248) of human were obtained from the genome-wide association study database. Genetically variable genes at five levels (phylum, class, order, family, and genus) of known intestinal flora, i.e., single nucleotide polymorphisms (SNPs), were extracted as instrumental variables for linkage disequilibrium (LD) analysis. Human genotype-phenotype association analysis was performed using PhenoScanner V2 database to exclude SNPs unrelated to HS in intestinal flora and analyze whether the selected SNPs were weak instrumental variables. The causal relationship between intestinal flora SNPs and HS was analyzed through four methods of TSMR analysis, namely inverse variance weighted (IVW), MR-Egger regression, weighted median, and weighted mode. Scatter plots of significant results from the four aforementioned analysis methods were plotted to analyze the correlation between intestinal flora SNPs and HS. Both IVW test and MR-Egger regression test were used to assess the heterogeneity of intestinal flora SNPs, MR-Egger regression test and MR-PRESSO outlier test were used to assess the horizontal multiplicity of intestinal flora SNPs, and leave-one-out sensitivity analysis was used to determine whether HS was caused by a single SNP in the intestinal flora. Reverse TSMR analyses were performed for HS SNPs and genus Intestinimonas or genus Ruminococcus2, respectively, to detect whether there was reverse causality between them. Results: A total of 196 known intestinal flora, belonging to 9 phyla, 16 classes, 20 orders, 32 families, and 119 genera, were obtained, and multiple SNPs were obtained from each flora as instrumental variables. LD analysis showed that the SNPs of the intestinal flora were consistent with the hypothesis that genetic variation was strongly associated with exposure factors, except for rs1000888, rs12566247, and rs994794. Human genotype-phenotype association analysis showed that none of the selected SNPs after LD analysis was excluded and there were no weak instrumental variables. IVW, MR-Egger regression, weighted median, and weighted mode of TSMR analysis showed that both genus Intestinimonas and genus Ruminococcus2 were causally associated with HS. Among them, forest plots of IVW and MR-Egger regression analyses also showed that 16 SNPs (the same SNPs number of this genus below) of genus Intestinimonas and 15 SNPs (the same SNPs number of this genus below) of genus Ruminococcus2 were protective factors for HS. Further, IVW analysis showed that genus Intestinimonas SNPs (with odds ratio of 0.62, 95% confidence interval of 0.41-0.93, P<0.05) and genus Ruminococcus2 SNPs (with odds ratio of 0.62, 95% confidence interval of 0.40-0.97, P<0.05) were negatively correlated with the risk of HS. Scatter plots showed that SNPs of genus Intestinimonas and genus Ruminococcus2 were protective factors of HS. Both IVW test and MR-Egger regression test showed that SNPs of genus Intestinimonas (with Q values of 5.73 and 5.76, respectively, P>0.05) and genus Ruminococcus2 (with Q values of 13.67 and 15.61, respectively, P>0.05) were not heterogeneous. MR-Egger regression test showed that the SNPs of genus Intestinimonas and genus Ruminococcus2 had no horizontal multiplicity (with intercepts of 0.01 and 0.06, respectively, P>0.05); MR-PRESSO outlier test showed that the SNPs of genus Intestinimonas and genus Ruminococcus2 had no horizontal multiplicity (P>0.05). Leave-one-out sensitivity analysis showed that no single intestinal flora SNP drove the occurrence of HS. Reverse TSMR analysis showed no reverse causality between HS SNPs and genus Intestinimonas or genus Ruminococcus2 (with odds ratios of 1.01 and 0.99, respectively, 95% confidence intervals of 0.97-1.06 and 0.96-1.04, respectively, P>0.05). Conclusions: There is a causal relationship between intestinal flora and HS of human, in which genus Intestinimonas and genus Ruminococcus2 have a certain effect on inhibiting HS.


Assuntos
Microbioma Gastrointestinal , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Humanos , Microbioma Gastrointestinal/genética , Cicatriz/microbiologia , Cicatriz/genética , Cicatriz/patologia , Hiperplasia/genética , Hiperplasia/microbiologia , Genótipo
9.
Nat Commun ; 15(1): 3502, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664378

RESUMO

Beneficial gut bacteria are indispensable for developing colonic mucus and fully establishing its protective function against intestinal microorganisms. Low-fiber diet consumption alters the gut bacterial configuration and disturbs this microbe-mucus interaction, but the specific bacteria and microbial metabolites responsible for maintaining mucus function remain poorly understood. By using human-to-mouse microbiota transplantation and ex vivo analysis of colonic mucus function, we here show as a proof-of-concept that individuals who increase their daily dietary fiber intake can improve the capacity of their gut microbiota to prevent diet-mediated mucus defects. Mucus growth, a critical feature of intact colonic mucus, correlated with the abundance of the gut commensal Blautia, and supplementation of Blautia coccoides to mice confirmed its mucus-stimulating capacity. Mechanistically, B. coccoides stimulated mucus growth through the production of the short-chain fatty acids propionate and acetate via activation of the short-chain fatty acid receptor Ffar2, which could serve as a new target to restore mucus growth during mucus-associated lifestyle diseases.


Assuntos
Colo , Fibras na Dieta , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Mucosa Intestinal , Receptores de Superfície Celular , Animais , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Camundongos , Colo/metabolismo , Colo/microbiologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Feminino , Camundongos Endogâmicos C57BL , Muco/metabolismo , Transplante de Microbiota Fecal , Simbiose , Propionatos/metabolismo , Clostridiales/metabolismo , Acetatos/metabolismo , Adulto
10.
Sci Rep ; 14(1): 9558, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664425

RESUMO

Neurodegenerative diseases (NDDs) are characterized by neuronal damage and progressive loss of neuron function. Microbiome-based interventions, such as dietary interventions, biotics, and fecal microbiome transplant, have been proposed as a novel approach to managing symptoms and modulating disease progression. Emerging clinical trials have investigated the efficacy of interventions modulating the GM in alleviating or reversing disease progression, yet no comprehensive synthesis have been done. A systematic review of the literature was therefore conducted to investigate the efficacy of microbiome-modulating methods. The search yielded 4051 articles, with 15 clinical trials included. The overall risk of bias was moderate in most studies. Most microbiome-modulating interventions changed the GM composition. Despite inconsistent changes in GM composition, the meta-analysis showed that microbiome-modulating interventions improved disease burden (SMD, - 0.57; 95% CI - 0.93 to - 0.21; I2 = 42%; P = 0.002) with a qualitative trend of improvement in constipation. However, current studies have high methodological heterogeneity and small sample sizes, requiring more well-designed and controlled studies to elucidate the complex linkage between microbiome, microbiome-modulating interventions, and NDDs.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/microbiologia , Doenças Neurodegenerativas/terapia , Transplante de Microbiota Fecal/métodos , Probióticos/uso terapêutico , Microbiota
11.
Commun Biol ; 7(1): 500, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664512

RESUMO

Ethnicity has a significant role in shaping the composition of the gut microbiome, which has implications in human physiology. This study intends to investigate the gut microbiome of Bengali people as well as several indigenous ethnicities (Chakma, Marma, Khyang, and Tripura) residing in the Chittagong Hill Tracts areas of Bangladesh. Following fecal sample collection from each population, part of the bacterial 16 s rRNA gene was amplified and sequenced using Illumina NovaSeq platform. Our findings indicated that Bangladeshi gut microbiota have a distinct diversity profile when compared to other countries. We also found out that Bangladeshi indigenous communities had a higher Firmicutes to Bacteroidetes ratio than the Bengali population. The investigation revealed an unclassified bacterium that was differentially abundant in Bengali samples while the genus Alistipes was found to be prevalent in Chakma samples. Further research on these bacteria might help understand diseases associated with these populations. Also, the current small sample-sized pilot study hindered the comprehensive understanding of the gut microbial diversity of the Bangladeshi population and its potential health implications. However, our study will help establish a basic understanding of the gut microbiome of the Bangladeshi population.


Assuntos
Microbioma Gastrointestinal , RNA Ribossômico 16S , População do Sul da Ásia , Bangladesh , Humanos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Fezes/microbiologia , Etnicidade , Bactérias/genética , Bactérias/classificação , Feminino , Adulto , Masculino , Povos Indígenas
12.
BMC Psychiatry ; 24(1): 324, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664669

RESUMO

BACKGROUND: Methamphetamine (MA) abuse has resulted in a plethora of social issues. Sleep disturbance is a prominent issue about MA addiction, which serve as a risk factor for relapse, and the gut microbiota could play an important role in the pathophysiological mechanisms of sleep disturbances. Therefore, improving sleep quality can be beneficial for treating methamphetamine addiction, and interventions addressing the gut microbiota may represent a promising approach. METHOD: We recruited 70 MA users to investigate the associations between sleep quality and fecal microbiota by the Pittsburgh Sleep Quality Index (PSQI), which was divided into MA-GS (PSQI score < 7, MA users with good sleep quality, n = 49) and MA-BS group (PSQI score ≥ 7, MA users with bad sleep quality, n = 21). In addition, we compared the gut microbiota between the MA-GS and healthy control (HC, n = 38) groups. 16S rRNA sequencing was applied to identify the gut bacteria. RESULT: The study revealed that the relative abundances of the Thermoanaerobacterales at the order level differed between the MA-GS and MA-BS groups. Additionally, a positive correlation was found between the relative abundance of the genus Sutterella and daytime dysfunction. Furthermore, comparisons between MA users and HCs revealed differences in beta diversity and relative abundances of various bacterial taxa. CONCLUSION: In conclusion, the study investigated alterations in the gut microbiota among MA users. Furthermore, we demonstrated that the genus Sutterella changes may be associated with daytime dysfunction, suggesting that the genus Sutterella may be a biomarker for bad sleep quality in MA users.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Fezes , Microbioma Gastrointestinal , Metanfetamina , Qualidade do Sono , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Metanfetamina/efeitos adversos , Masculino , Adulto , Fezes/microbiologia , Feminino , RNA Ribossômico 16S/genética , Adulto Jovem , Transtornos do Sono-Vigília/microbiologia
13.
Front Cell Infect Microbiol ; 14: 1328741, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665877

RESUMO

Polycystic ovary syndrome (PCOS) is a common systemic disorder related to endocrine disorders, affecting the fertility of women of childbearing age. It is associated with glucose and lipid metabolism disorders, altered gut microbiota, and insulin resistance. Modern treatments like pioglitazone, metformin, and spironolactone target specific symptoms of PCOS, while in Chinese medicine, moxibustion is a common treatment. This study explores moxibustion's impact on PCOS by establishing a dehydroepiandrosterone (DHEA)-induced PCOS rat model. Thirty-six specific pathogen-free female Sprague-Dawley rats were divided into four groups: a normal control group (CTRL), a PCOS model group (PCOS), a moxibustion treatment group (MBT), and a metformin treatment group (MET). The MBT rats received moxibustion, and the MET rats underwent metformin gavage for two weeks. We evaluated ovarian tissue changes, serum testosterone, fasting blood glucose (FBG), and fasting insulin levels. Additionally, we calculated the insulin sensitivity index (ISI) and the homeostasis model assessment of insulin resistance index (HOMA-IR). We used 16S rDNA sequencing for assessing the gut microbiota, 1H NMR spectroscopy for evaluating metabolic changes, and Spearman correlation analysis for investigating the associations between metabolites and gut microbiota composition. The results indicate that moxibustion therapy significantly ameliorated ovarian dysfunction and insulin resistance in DHEA-induced PCOS rats. We observed marked differences in the composition of gut microbiota and the spectrum of fecal metabolic products between CTRL and PCOS rats. Intriguingly, following moxibustion intervention, these differences were largely diminished, demonstrating the regulatory effect of moxibustion on gut microbiota. Specifically, moxibustion altered the gut microbiota by increasing the abundance of UCG-005 and Turicibacter, as well as decreasing the abundance of Desulfovibrio. Concurrently, we also noted that moxibustion promoted an increase in levels of short-chain fatty acids (including acetate, propionate, and butyrate) associated with the gut microbiota of PCOS rats, further emphasizing its positive impact on gut microbes. Additionally, moxibustion also exhibited effects in lowering FBG, testosterone, and fasting insulin levels, which are key biochemical indicators associated with PCOS and insulin resistance. Therefore, these findings suggest that moxibustion could alleviate DHEA-induced PCOS by regulating metabolic levels, restoring balance in gut microbiota, and modulating interactions between gut microbiota and host metabolites.


Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal , Resistência à Insulina , Moxibustão , Síndrome do Ovário Policístico , Ratos Sprague-Dawley , Animais , Síndrome do Ovário Policístico/terapia , Síndrome do Ovário Policístico/metabolismo , Feminino , Moxibustão/métodos , Ratos , Desidroepiandrosterona/metabolismo , Glicemia/metabolismo , Insulina/sangue , Insulina/metabolismo , Metformina/farmacologia , Testosterona/sangue , Ovário/metabolismo , Ovário/microbiologia
14.
J Transl Med ; 22(1): 352, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622667

RESUMO

BACKGROUND: Quinic acid (QA) and its derivatives have good lipid-lowering and hepatoprotective functions, but their role in atherosclerosis remains unknown. This study attempted to investigate the mechanism of QA on atherogenesis in Apoe-/- mice induced by HFD. METHODS: HE staining and oil red O staining were used to observe the pathology. The PCSK9, Mac-3 and SM22a expressions were detected by IHC. Cholesterol, HMGB1, TIMP-1 and CXCL13 levels were measured by biochemical and ELISA. Lipid metabolism and the HMGB1-SREBP2-SR-BI pathway were detected by PCR and WB. 16 S and metabolomics were used to detect gut microbiota and serum metabolites. RESULTS: QA or low-frequency ABX inhibited weight gain and aortic tissue atherogenesis in HFD-induced Apoe-/- mice. QA inhibited the increase of cholesterol, TMA, TMAO, CXCL13, TIMP-1 and HMGB1 levels in peripheral blood of Apoe-/- mice induced by HFD. Meanwhile, QA or low-frequency ABX treatment inhibited the expression of CAV-1, ABCA1, Mac-3 and SM22α, and promoted the expression of SREBP-1 and LXR in the vascular tissues of HFD-induced Apoe-/- mice. QA reduced Streptococcus_danieliae abundance, and promoted Lactobacillus_intestinalis and Ileibacterium_valens abundance in HFD-induced Apoe-/- mice. QA altered serum galactose metabolism, promoted SREBP-2 and LDLR, inhibited IDOL, FMO3 and PCSK9 expression in liver of HFD-induced Apoe-/- mice. The combined treatment of QA and low-frequency ABX regulated microbe-related Glycoursodeoxycholic acid and GLYCOCHENODEOXYCHOLATE metabolism in HFD-induced Apoe-/- mice. QA inhibited TMAO or LDL-induced HCAECs damage and HMGB1/SREBP2 axis dysfunction, which was reversed by HMGB1 overexpression. CONCLUSIONS: QA regulated the gut-liver lipid metabolism and chronic vascular inflammation of TMA/TMAO through gut microbiota to inhibit the atherogenesis in Apoe-/- mice, and the mechanism may be related to the HMGB1/SREBP2 pathway.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Proteína HMGB1 , Metilaminas , Camundongos , Animais , Pró-Proteína Convertase 9 , Proteína HMGB1/metabolismo , Ácido Quínico , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Metabolismo dos Lipídeos , Camundongos Knockout para ApoE , Aterosclerose/patologia , Inflamação , Colesterol , Apolipoproteínas E/metabolismo , Camundongos Endogâmicos C57BL
15.
Eur J Med Res ; 29(1): 240, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641655

RESUMO

BACKGROUND: Immunological liver injury (ILI) is a common liver disease associated with the microbiota-gut-liver axis. Jian Gan powder (JGP) exhibits both protective and therapeutic effects on hepatitis virus-induced ILI in the clinic. However, the underlying mechanisms remain elusive. The aim of this study is to investigate the hepatoprotective effects and associated mechanisms of JGP in the context of gut microbiota, utilizing a mouse model of ILI. METHODS: The mouse model was established employing Bacillus Calmette-Guérin (BCG) plus lipopolysaccharide (LPS). Following treatment with JGP (7.5, 15, or 30 g/kg), serum, liver, and fresh fecal samples were analyzed. 16S rRNA gene sequencing and untargeted metabolomics profiling were performed to assess the role of JGP on the gut microbiota and its metabolites. RESULTS: JGP treatment markedly reduced serum IFN-γ, IL-6, IL-22, and hepatic p-STAT3 (phosphorylated transducer and activator of transcription-3) expression. In contrast, JGP increased the percentage of proliferating cell nuclear antigen-positive liver cells in treated mice. Fecal 16S rRNA gene sequencing revealed that JGP treatment restored the levels of Alloprevotella, Burkholderia-Caballeronia-Paraburkholderia, Muribaculum, Streptococcus, and Stenotrophomonas. Additionally, metabolomics analysis of fecal samples showed that JGP restored the levels of allylestrenol, eplerenone, phosphatidylethanolamine (PE) (P-20:0/0:0), sphingomyelin (SM) d27:1, soyasapogenol C, chrysin, and soyasaponin I. CONCLUSIONS: JGP intervention improves ILI by restoring gut microbiota and modifying its metabolic profiles. These results provide a novel insight into the mechanism of JGP in treating ILI and the scientific basis to support its clinical application.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Microbioma Gastrointestinal/genética , Pós/metabolismo , Pós/farmacologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/metabolismo , Fígado/metabolismo , Metaboloma
16.
BMC Microbiol ; 24(1): 133, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643067

RESUMO

BACKGROUND: This study aimed to investigate the differences in the microbiota composition of serum exosomes from patients with acute and chronic cholecystitis. METHOD: Exosomes were isolated from the serum of cholecystitis patients through centrifugation and identified and characterized using transmission electron microscopy and nano-flow cytometry. Microbiota analysis was performed using 16S rRNA sequencing. RESULTS: Compared to patients with chronic cholecystitis, those with acute cholecystitis exhibited lower richness and diversity. Beta diversity analysis revealed significant differences in the microbiota composition between patients with acute and chronic cholecystitis. The relative abundance of Proteobacteria was significantly higher in exosomes from patients with acute cholecystitis, whereas Actinobacteria, Bacteroidetes, and Firmicutes were significantly more abundant in exosomes from patients with chronic cholecystitis. Furthermore, functional predictions of microbial communities using Tax4Fun analysis revealed significant differences in metabolic pathways such as amino acid metabolism, carbohydrate metabolism, and membrane transport between the two patient groups. CONCLUSIONS: This study confirmed the differences in the microbiota composition within serum exosomes of patients with acute and chronic cholecystitis. Serum exosomes could serve as diagnostic indicators for distinguishing acute and chronic cholecystitis.


Assuntos
Colecistite Aguda , Colecistite , Exossomos , Microbioma Gastrointestinal , Microbiota , Humanos , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Fezes/microbiologia , Microbiota/genética
17.
BMC Microbiol ; 24(1): 131, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643098

RESUMO

BACKGROUND: Exposure to extreme cold or heat temperature is one leading cause of weather-associated mortality and morbidity in animals. Emerging studies demonstrate that the microbiota residing in guts act as an integral factor required to modulate host tolerance to cold or heat exposure, but common and unique patterns of animal-temperature associations between cold and heat have not been simultaneously examined. Therefore, we attempted to investigate the roles of gut microbiota in modulating tolerance to cold or heat exposure in mice. RESULTS: The results showed that both cold and heat acutely change the body temperature of mice, but mice efficiently maintain their body temperature at conditions of chronic extreme temperatures. Mice adapt to extreme temperatures by adjusting body weight gain, food intake and energy harvest. Fascinatingly, 16 S rRNA sequencing shows that extreme temperatures result in a differential shift in the gut microbiota. Moreover, transplantation of the extreme-temperature microbiota is sufficient to enhance host tolerance to cold and heat, respectively. Metagenomic sequencing shows that the microbiota assists their hosts in resisting extreme temperatures through regulating the host insulin pathway. CONCLUSIONS: Our findings highlight that the microbiota is a key factor orchestrating the overall energy homeostasis under extreme temperatures, providing an insight into the interaction and coevolution of hosts and gut microbiota.


Assuntos
Microbioma Gastrointestinal , Temperatura Alta , Animais , Camundongos , Temperatura , Microbioma Gastrointestinal/fisiologia , Temperatura Baixa , Adaptação Fisiológica/fisiologia
18.
BMC Vet Res ; 20(1): 151, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643127

RESUMO

BACKGROUND: Numerous previous reports have demonstrated the efficacy of Lactic acid bacteria (LAB) in promoting growth and preventing disease in animals. In this study, Enterococcus faecium ZJUIDS-R1 and Ligilactobaciiius animalis ZJUIDS-R2 were isolated from the feces of healthy rabbits, and both strains showed good probiotic properties in vitro. Two strains (108CFU/ml/kg/day) were fed to weaned rabbits for 21 days, after which specific bacterial infection was induced to investigate the effects of the strains on bacterial diarrhea in the rabbits. RESULTS: Our data showed that Enterococcus faecium ZJUIDS-R1 and Ligilactobaciiius animalis ZJUIDS-R2 interventions reduced the incidence of diarrhea and systemic inflammatory response, alleviated intestinal damage and increased antibody levels in animals. In addition, Enterococcus faecium ZJUIDS-R1 restored the flora abundance of Ruminococcaceae1. Ligilactobaciiius animalis ZJUIDS-R2 up-regulated the flora abundance of Adlercreutzia and Candidatus Saccharimonas. Both down-regulated the flora abundance of Shuttleworthia and Barnesiella to restore intestinal flora balance, thereby increasing intestinal short-chain fatty acid content. CONCLUSIONS: These findings suggest that Enterococcus faecium ZJUIDS-R1 and Ligilactobaciiius animalis ZJUIDS-R2 were able to improve intestinal immunity, produce organic acids and regulate the balance of intestinal flora to enhance disease resistance and alleviate diarrhea-related diseases in weanling rabbits.


Assuntos
Infecções Bacterianas , Enterococcus faecium , Microbioma Gastrointestinal , Lactobacillales , Probióticos , Coelhos , Animais , Enterococcus faecium/fisiologia , Probióticos/uso terapêutico , Probióticos/farmacologia , Diarreia/prevenção & controle , Diarreia/veterinária , Infecções Bacterianas/veterinária , Imunidade
19.
Nat Commun ; 15(1): 3379, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643180

RESUMO

Transition from traditional high-fiber to Western diets in urbanizing communities of Sub-Saharan Africa is associated with increased risk of non-communicable diseases (NCD), exemplified by colorectal cancer (CRC) risk. To investigate how urbanization gives rise to microbial patterns that may be amenable by dietary intervention, we analyzed diet intake, fecal 16 S bacteriome, virome, and metabolome in a cross-sectional study in healthy rural and urban Xhosa people (South Africa). Urban Xhosa individuals had higher intakes of energy (urban: 3,578 ± 455; rural: 2,185 ± 179 kcal/d), fat and animal protein. This was associated with lower fecal bacteriome diversity and a shift from genera favoring degradation of complex carbohydrates (e.g., Prevotella) to taxa previously shown to be associated with bile acid metabolism and CRC. Urban Xhosa individuals had higher fecal levels of deoxycholic acid, shown to be associated with higher CRC risk, but similar short-chain fatty acid concentrations compared with rural individuals. Fecal virome composition was associated with distinct gut bacterial communities across urbanization, characterized by different dominant host bacteria (urban: Bacteriodota; rural: unassigned taxa) and variable correlation with fecal metabolites and dietary nutrients. Food and skin microbiota samples showed compositional differences along the urbanization gradient. Rural-urban dietary transition in South Africa is linked to major changes in the gut microbiome and metabolome. Further studies are needed to prove cause and identify whether restoration of specific components of the traditional diet will arrest the accelerating rise in NCDs in Sub-Saharan Africa.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , População da África Austral , Animais , Humanos , Urbanização , África do Sul/epidemiologia , Estudos Transversais , Dieta , Metaboloma , Dieta Ocidental , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/microbiologia , Fezes/microbiologia
20.
Cell Commun Signal ; 22(1): 232, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637851

RESUMO

Metastasis poses a major challenge in colorectal cancer (CRC) treatment and remains a primary cause of mortality among patients with CRC. Recent investigations have elucidated the involvement of disrupted gut microbiota homeostasis in various facets of CRC metastasis, exerting a pivotal influence in shaping the metastatic microenvironment, triggering epithelial-mesenchymal transition (EMT), and so on. Moreover, therapeutic interventions targeting the gut microbiota demonstrate promise in enhancing the efficacy of conventional treatments for metastatic CRC (mCRC), presenting novel avenues for mCRC clinical management. Grounded in the "seed and soil" hypothesis, this review consolidates insights into the mechanisms by which imbalanced gut microbiota promotes mCRC and highlights recent strides in leveraging gut microbiota modulation for the clinical prevention and treatment of mCRC. Emphasis is placed on the considerable potential of manipulating gut microbiota within clinical settings for managing mCRC.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Neoplasias Colorretais/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...